<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$37,033.15</td>
</tr>
<tr>
<td>2</td>
<td>$10,338.10</td>
</tr>
<tr>
<td>3</td>
<td>$4409.12</td>
</tr>
<tr>
<td>4</td>
<td>$111.98</td>
</tr>
<tr>
<td>5</td>
<td>$2224.24</td>
</tr>
<tr>
<td>6</td>
<td>$302.50</td>
</tr>
<tr>
<td>7</td>
<td>$5626.65</td>
</tr>
<tr>
<td>8</td>
<td>$x = -1, y = 1$</td>
</tr>
<tr>
<td>9</td>
<td>No solution</td>
</tr>
<tr>
<td>10</td>
<td>$\begin{bmatrix} 0.52 & 0.88 \ 0.22 & 0.41 \end{bmatrix}$</td>
</tr>
<tr>
<td>11</td>
<td>$\begin{bmatrix} 3 & -1 \ -1 & 2 \end{bmatrix}$</td>
</tr>
<tr>
<td>12</td>
<td>1199.10</td>
</tr>
<tr>
<td>13</td>
<td>$186,108.55$</td>
</tr>
<tr>
<td>14</td>
<td>1486.08</td>
</tr>
</tbody>
</table>
1. A newborn child receives a $10,000 gift toward a college education from her grandparents. How much will the $10,000 be worth in 20 years if it is invested at 6.6% compounded quarterly? (Round your answer to the nearest cent.)

$37,033.15

2. On Jan 1, 2006 a deposit was made into a savings account paying interest compounded quarterly. The balance on Jan 1, 2009 was $12,000.00 and the balance on April 1, 2009 was $12,150.00. How large was the deposit? (Round your answer to the nearest cent.)

$10,338.10
3. At the end of each month, $400 is deposited into a savings account paying 2.7% interest compounded monthly. The balance after 8 years will be $42,809.12. What is the amount of interest earned? (Round your answer to the nearest cent.)

$4409.12

4. Consider a $77,604 25-year mortgage at interest rate 6% compounded monthly with a $500 monthly payment. How much of the first month’s payment is applied to paying off the principal? (Round your answer to the nearest cent.)

$111.98
5. A loan of $105,495.50 is to be amortized over a 5-year term at 12% interest compounded monthly with monthly payments and a $10,000 balloon payment at the end of the term. What is the monthly payment for this loan? (Round your answer to the nearest cent.)

$2224.24

6. Using the add-on method, what is the monthly payment for a $9000 loan at 7% interest for three years? (Round your answer to the nearest cent.)

$302.50
7. Consider a 20-year mortgage of $500,000 at 6.3% interest compounded monthly where the loan is interest only for ten years. What is the monthly payment during the last ten years? (Round your answer to the nearest cent.)

5626.65

8. Use the Gauss-Jordan elimination method to find all solutions of the system of equations:

\[
\begin{align*}
\begin{cases}
x + 3y &= 2 \\
5x + 6y &= 1
\end{cases}
\end{align*}
\]

\[x = -1, y = 1\]
9. Use the Gauss-Jordan elimination method to find all solutions of the system of equations:

\[
\begin{align*}
 x - 5y + 6z &= -16 \\
 2x - 10y + 12z &= -34 \\
 -2x + 10y - 12z &= 34
\end{align*}
\]

No solution

10. Perform the multiplication.

\[
\begin{bmatrix}
 0.6 & 0.8 \\
 0.2 & 0.5
\end{bmatrix}
\begin{bmatrix}
 0.6 & 0.8 \\
 0.2 & 0.5
\end{bmatrix}
\]

\[
\begin{bmatrix}
 0.52 & 0.88 \\
 0.22 & 0.41
\end{bmatrix}
\]
11. Find the inverse (if it exists) of the given matrix:
\[
\begin{bmatrix}
0.4 & 0.2 \\
0.2 & 0.6
\end{bmatrix}
\begin{bmatrix}
3 & -1 \\
-1 & 2
\end{bmatrix}
\]

12. Consider a 30-year $200,000 5/1 ARM having a 2.8% margin and based on the CMT index. Suppose the interest rate is initially 6% and the value of the CMT is 5.6% five years later. Assume that all interest rates use monthly compounding. Calculate the monthly payment for the first 5 years. (Round your answer to the nearest cent.)

(Grading: 5 points total. If answer is incorrect, 1 point for each step.)

\[
i = \frac{0.06}{12} = 0.005
\]

\[
n = (12)(30) = 360
\]

\[
200,000 = \frac{1 - (1 + 0.005)^{-360}}{0.005} \cdot R
\]

1199.10
13. For the mortgage in Question 12, calculate the unpaid balance at the end of the first 5 years. (Round your answer to the nearest cent.)

(Grading: 5 points total. If answer is incorrect, 1 point for each step. 5 points for correct technique with incorrect inputs from Question 12.)

\[i = \frac{0.06}{12} = 0.005 \]

\[n = (12)(25) = 300 \]

\[P = \frac{1 - (1 + 0.005)^{-300}}{0.005} \cdot (1199.10) \]

\[\$186,108.55 \]

14. For the mortgage in Question 12, calculate the monthly payment for the 6th year. (Round your answer to the nearest cent.)

(Grading: 5 points total. If answer is incorrect, 1 point for each step. 5 points for correct technique with incorrect inputs from Questions 12 and 13.)

\[r = 5.6\% + 2.8\% = 8.4\% \]

\[i = \frac{0.084}{12} = 0.007 \]

\[n = (12)(25) = 300 \]

\[186,108.55 = \frac{1 - (1 + 0.007)^{-300}}{0.007} \cdot R \]

\[\$1486.08 \]
Potentially Helpful Formulas

\[F = (1 + i)^n P \]

\[P = \frac{F}{(1 + i)^n} \]

\[r_{\text{eff}} = \text{APY} = (1 + i)^m - 1 \]

\[F = \frac{(1 + i)^n - 1}{i} \cdot R \]

\[P = \frac{1 - (1 + i)^{-n}}{i} \cdot R \]

\[R = \frac{P(1 + rt)}{12t} \]